Respon Imun Non-spesifik Ikan Tawes (Barbonymus gonionotus) melalui Suplementasi β-glucan dan Efektivitasnya terhadap Ikan Mas (Cyprinus carpio)
DOI:
https://doi.org/10.30595/jrst.v8i2.21941Keywords:
β-glucan, Imunitas Non-Spesifik, Ikan Tawes dan Ikan MasAbstract
Ikan tawes (Barbonymus gonionotus) merupakan jenis ikan herbivora yang masih berpotensi dikembangkan. Pakan ikan jenis herbivora dapat berasal dari tumbuhan dan turunanya seperti daun talas, ampas tahu dan dedak halus yang banyak terdapat di masyarakat. Bahan baku lokal tersebut bisa dibuat pakan buatan sendiri sebagai substitusi pakan pabrikan (pellet) yang harganya cukup mahal. Sedangkan untuk meningkatkan imunitas diberikan imunostimulan yang berasal dari ekstraksi ragi roti Saccharomyces cerevisiae sebagai β-glucan yang diketahui dapat meningkatkan imunitas ikan. Tujuan penelitian ini untuk mengetahui tingkat efektivitas pemberian diet suplemen β-glucan terhadap imunitas non-spesifik ikan tawes dan ikan mas. Penelitian menggunakan Rancangan Acak Lengkap (RAL) dengan 4 perlakuan dan 3 ulangan. Perlakuan β-glucan dicampur kedalam pakan masing-masing dengan dosis 2,5; 5; 7,5 dan 10 g kg-1 pakan. Hasil penelitian menunjukkan β-glucan lebih efektif diterapkan pada budidaya ikan tawes yang ditandai dengan besarnya nilai persentase monosit dan neutrofil serta nilai aktivitas aglutinasi dibanding ikan mas. Sedangkan ikan mas hanya unggul pada parameter aktivitas fagositosis dibanding ikan tawes. Hal ini menunjukkan β-glucan dapat digunakan untuk meningkatkan imunitas pada budidaya ikan, namun efektivitasnya lebih baik pada ikan tawes dibanding ikan mas.
References
Ahsani, D. N. (2014). Respon Imun Pada Infeksi Jamur. Jurnal Kedokteran Dan Kesehatan Indonesia, 6(2), 55.
Anjani, T. P., Wahjuningrum, D., Nuryati, S., & Khasani, I. (2021). The Evaluation of the Addition of Commercial Yeast with β -Glucan Content in Feed on the Immunity of Snakehead Fish Channa striata Infected by Aeromonas hydrophila Bacteria. Journal of Aquaculture and Fish Health, 10(2), 155. https://doi.org/10.20473/jafh.v10i2.22766
Barera, A., Buscemi, S., Monastero, R., Caruso, C., Caldarella, R., Ciaccio, M., & Vasto, S. (2016). β-glucans: Ex vivo inflammatory and oxidative stress results after pasta intake. Immunity and Ageing, 13(1), 1–6. https://doi.org/10.1186/s12979-016-0068-x
Cornet, V., Khuyen, T. D., Mandiki, S. N. M., Betoulle, S., Bossier, P., Reyes-López, F. E., Tort, L., & Kestemont, P. (2021). GAS1: A New β-Glucan Immunostimulant Candidate to Increase Rainbow Trout (Oncorhynchus mykiss) Resistance to Bacterial Infections With Aeromonas salmonicida achromogenes. Frontiers in Immunology, 12(July), 1–16. https://doi.org/10.3389/fimmu.2021.693613
Dou, X., Huang, H., Li, Y., Deng, J., & Tan, B. (2023). Effects of dietary β-glucan on growth rate, antioxidant status, immune response, and resistance against Aeromonas hydrophila in genetic improvement of farmed tilapia (GIFT, Oreochromis niloticus). Aquaculture Reports, 29(January), 1–8. https://doi.org/10.1016/j.aqrep.2023.101480
Drescher, B., & Bai, F. (2013). Neutrophil in viral infections, Friend or foe? Virus Research, 171(1), 1–7. https://doi.org/10.1016/j.virusres.2012.11.002
Goodridge, H. S., Wolf, A. J., & Underhill, D. M. (2009). Β-Glucan Recognition By the Innate Immune System. Immunological Reviews, 230(1), 38–50. https://doi.org/10.1111/j.1600-065X.2009.00793.x
Hadiuzzaman, M., Moniruzzaman, M., Shahjahan, M., Bai, S. C., Min, T., & Hossain, Z. (2022). β-Glucan: Mode of Action and Its Uses in Fish Immunomodulation. Frontiers in Marine Science, 9(July), 1–15. https://doi.org/10.3389/fmars.2022.905986
Hastuti, S. D. (2012). Suplementasi β-glucan dari ragi roti (Saccharomyces cerevisiae) dalam pakan terhadap aktivitas fagositosis, aktivitas NBT, total protein plasma dan aktivitas aglutinasi darah ikan nila (Orechromis niloticus). Depik, 1(3), 149–155.
Hermans, L., De Pelsmaeker, S., Denaeghel, S., Cox, E., Favoreel, H. W., & Devriendt, B. (2021). β-Glucan-Induced IL-10 Secretion by Monocytes Triggers Porcine NK Cell Cytotoxicity. Frontiers in Immunology, 12(February), 1–14. https://doi.org/10.3389/fimmu.2021.634402
Jamal, I. N., Tumbol, R. A., & Mangindaan, R. E. . (2013). The use of β-glucan extracted from baker’s yeast (Saccharomyces cerevisiae) to increase non-specific immune system and resistence of tilapia (Oreochromis niloticus) to Aeromonas hydrophila. Aquatic Science & Management, 98(Mei), 92. https://doi.org/10.35800/jasm.0.0.2013.2288
Kühlwein, H., Merrifield, D. L., Rawling, M. D., Foey, A. D., & Davies, S. J. (2014). Effects of dietary β-(1,3)(1,6)-D-glucan supplementation on growth performance, intestinal morphology and haemato-immunological profile of mirror carp (Cyprinus carpio L.). Journal of Animal Physiology and Animal Nutrition, 98(2), 279–289. https://doi.org/10.1111/jpn.12078
Machuca, C., Méndez-Martínez, Y., Reyes-Becerril, M., & Angulo, C. (2022). Yeast β-Glucans as Fish Immunomodulators: A Review. Animals, 12(16), 1–24. https://doi.org/10.3390/ani12162154
Moleko, A., Sinjal, H. J., & Manoppo, H. (2014). Kelangsungan Hidup Larva Ikan Nila yang Berasal Dari Induk yang Diberi Pakan Berimunostimulan. E-Journal BUDIDAYA PERAIRAN, 2(3), 17–23. https://doi.org/10.35800/bdp.2.3.2014.5699
Muahiddah, N., & Diamahesa, W. A. (2023). The use of garlic (Allium sativum) as an immunostimulant in akuakultur. Journal of Fish Health, 3(1), 11–18. https://doi.org/10.29303/jfh.v3i1.2751
Novriadi, R., & Ibtisam. (2014). Aktivasi Sistim Imun Artemia Melalui Suplementasi β-glukan. Omni-Akuatika, 13(19), 92–102.
Palić, D., Andreasen, C. B., Herolt, D. M., Menzel, B. W., & Roth, J. A. (2006). Immunomodulatory effects of β-glucan on neutrophil function in fathead minnows (Pimephales promelas Rafinesque, 1820). Developmental and Comparative Immunology, 30(9), 817–830. https://doi.org/10.1016/j.dci.2005.11.004
Purbomartono, C., Aditya, Y., Mulia, D. S., Wuliandari, J. R., & Husin, A. (2021). Respon Imun Non-Spesifik Ikan Mas (Cyprinus carpio L.) yang Diberi β-Glukan Melalui Diet Pakan. Sainteks, 17(2), 115. https://doi.org/10.30595/sainteks.v17i2.8970
Qiao, Y., Han, F., Lu, K., Zhou, L., Rombenso, A., & Li, E. (2023). Physiological Response , and Gut Microbiota of Pacific White. Animals, 13(3778), 2–16.
Qiao, Y., Zhou, L., Qu, Y., Lu, K., Han, F., & Li, E. (2022). Effects of Different Dietary β-Glucan Levels on Antioxidant Capacity and Immunity, Gut Microbiota and Transcriptome Responses of White Shrimp (Litopenaeus vannamei) under Low Salinity. Antioxidants, 11(11), 1–16. https://doi.org/10.3390/antiox11112282
Rachmawati, D., Setyobudi, R. H., Burlakovs, J., Elfitasari, T., & Purnomo, A. H. (2021). Impacts of Immunostimulant Yeast (. 14(2), 297–302.
Rodrigues, M. V., Zanuzzo, F. S., Koch, J. F. A., de Oliveira, C. A. F., Sima, P., & Vetvicka, V. (2020). Development of Fish Immunity and the Role of β-Glucan in Immune Responses. Molecules, 25(22), 1–33. https://doi.org/10.3390/MOLECULES25225378
Sado, R. Y., Gimbo, R. Y., & Salles, F. B. (2016). Routes of β-glucan administration affect hematological and immune responses of Oreochromis niloticus. Archivos de Zootecnia, 65(252), 519–524.
Şahan, A., & Duman, S. (2010). Effect of β Glucan on Haematology of Common Carp (Cyprinus Carpio) Infected by Ectoparasites. Mediterranean Aquaculture Journal, 3(1), 1–7. https://doi.org/10.21608/maj.2010.2669
Sánchez-Martínez, J. G., Rábago-Castro, J. L., Vázquez-Sauceda, M. de la L., Pérez-Castañeda, R., Blanco-Martínez, Z., & Benavides-González, F. (2017). Effect of β-glucan dietary levels on immune response and hematology of channel catfish Ictalurus punctatus juveniles. Latin American Journal of Aquatic Research, 45(4), 690–698. https://doi.org/10.3856/vol45-issue4-fulltext-5
Vargas-Albores, F., & Yepiz-Plascencia, G. (2000). Beta glucan binding protein and its role in shrimp immune response. Aquaculture, 191(1–3), 13–21. https://doi.org/10.1016/S0044-8486(00)00416-6
Vetvicka, V., Vannucci, L., & Sima, P. (2013). The effects of β - Glucan on fish immunity. North American Journal of Medical Sciences, 5(10), 580–588. https://doi.org/10.4103/1947-2714.120792
Xiong, S., Dong, L., & Cheng, L. (2021). Neutrophils in cancer carcinogenesis and metastasis. Journal of Hematology and Oncology, 14(1), 1–17. https://doi.org/10.1186/s13045-021-01187-y
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Cahyono Purbomartono, Arief Prihandoko, Dini Siswani Mulia, Wakhudin Wakhudin, Beny Widjarnako

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)
JRST (Jurnal Riset Sains dan Teknologi) is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.