Respon Imun Non-spesifik Ikan Tawes (Barbonymus gonionotus) melalui Suplementasi β-glucan dan Efektivitasnya terhadap Ikan Mas (Cyprinus carpio)

Authors

  • Cahyono Purbomartono Universitas Muhammadiyah Purwokerto
  • Arief Prihandoko Universitas Muhammadiyah Purwokerto
  • Dini Siswani Mulia Universitas Muhammadiyah Purwokerto
  • Wakhudin Wakhudin Universitas Muhammadiyah Purwokerto
  • Beny Widjarnako Universitas Muhammadiyah Purwokerto

DOI:

https://doi.org/10.30595/jrst.v8i2.21941

Keywords:

β-glucan, Imunitas Non-Spesifik, Ikan Tawes dan Ikan Mas

Abstract

Ikan tawes (Barbonymus gonionotus) merupakan jenis ikan herbivora yang masih berpotensi dikembangkan. Pakan ikan jenis herbivora dapat berasal dari tumbuhan dan turunanya seperti daun talas, ampas tahu dan dedak halus yang banyak terdapat di masyarakat. Bahan baku lokal tersebut bisa dibuat pakan buatan sendiri sebagai substitusi pakan pabrikan (pellet) yang harganya cukup mahal. Sedangkan untuk meningkatkan imunitas diberikan imunostimulan yang berasal dari ekstraksi ragi roti Saccharomyces cerevisiae sebagai β-glucan yang diketahui dapat meningkatkan imunitas ikan. Tujuan penelitian ini untuk mengetahui tingkat efektivitas pemberian diet suplemen β-glucan terhadap imunitas non-spesifik ikan tawes dan ikan mas. Penelitian menggunakan Rancangan Acak Lengkap (RAL) dengan 4 perlakuan dan 3 ulangan. Perlakuan β-glucan dicampur kedalam pakan masing-masing dengan dosis 2,5; 5; 7,5 dan 10 g kg-1 pakan. Hasil penelitian menunjukkan β-glucan lebih efektif diterapkan pada budidaya ikan tawes yang ditandai dengan besarnya nilai persentase monosit dan neutrofil serta nilai aktivitas aglutinasi dibanding ikan mas. Sedangkan ikan mas hanya  unggul pada parameter aktivitas fagositosis dibanding ikan tawes. Hal ini menunjukkan β-glucan dapat digunakan untuk meningkatkan imunitas pada budidaya ikan, namun efektivitasnya  lebih baik pada ikan tawes dibanding ikan mas.

References

Ahsani, D. N. (2014). Respon Imun Pada Infeksi Jamur. Jurnal Kedokteran Dan Kesehatan Indonesia, 6(2), 55.

Anjani, T. P., Wahjuningrum, D., Nuryati, S., & Khasani, I. (2021). The Evaluation of the Addition of Commercial Yeast with β -Glucan Content in Feed on the Immunity of Snakehead Fish Channa striata Infected by Aeromonas hydrophila Bacteria. Journal of Aquaculture and Fish Health, 10(2), 155. https://doi.org/10.20473/jafh.v10i2.22766

Barera, A., Buscemi, S., Monastero, R., Caruso, C., Caldarella, R., Ciaccio, M., & Vasto, S. (2016). β-glucans: Ex vivo inflammatory and oxidative stress results after pasta intake. Immunity and Ageing, 13(1), 1–6. https://doi.org/10.1186/s12979-016-0068-x

Cornet, V., Khuyen, T. D., Mandiki, S. N. M., Betoulle, S., Bossier, P., Reyes-López, F. E., Tort, L., & Kestemont, P. (2021). GAS1: A New β-Glucan Immunostimulant Candidate to Increase Rainbow Trout (Oncorhynchus mykiss) Resistance to Bacterial Infections With Aeromonas salmonicida achromogenes. Frontiers in Immunology, 12(July), 1–16. https://doi.org/10.3389/fimmu.2021.693613

Dou, X., Huang, H., Li, Y., Deng, J., & Tan, B. (2023). Effects of dietary β-glucan on growth rate, antioxidant status, immune response, and resistance against Aeromonas hydrophila in genetic improvement of farmed tilapia (GIFT, Oreochromis niloticus). Aquaculture Reports, 29(January), 1–8. https://doi.org/10.1016/j.aqrep.2023.101480

Drescher, B., & Bai, F. (2013). Neutrophil in viral infections, Friend or foe? Virus Research, 171(1), 1–7. https://doi.org/10.1016/j.virusres.2012.11.002

Goodridge, H. S., Wolf, A. J., & Underhill, D. M. (2009). Β-Glucan Recognition By the Innate Immune System. Immunological Reviews, 230(1), 38–50. https://doi.org/10.1111/j.1600-065X.2009.00793.x

Hadiuzzaman, M., Moniruzzaman, M., Shahjahan, M., Bai, S. C., Min, T., & Hossain, Z. (2022). β-Glucan: Mode of Action and Its Uses in Fish Immunomodulation. Frontiers in Marine Science, 9(July), 1–15. https://doi.org/10.3389/fmars.2022.905986

Hastuti, S. D. (2012). Suplementasi β-glucan dari ragi roti (Saccharomyces cerevisiae) dalam pakan terhadap aktivitas fagositosis, aktivitas NBT, total protein plasma dan aktivitas aglutinasi darah ikan nila (Orechromis niloticus). Depik, 1(3), 149–155.

Hermans, L., De Pelsmaeker, S., Denaeghel, S., Cox, E., Favoreel, H. W., & Devriendt, B. (2021). β-Glucan-Induced IL-10 Secretion by Monocytes Triggers Porcine NK Cell Cytotoxicity. Frontiers in Immunology, 12(February), 1–14. https://doi.org/10.3389/fimmu.2021.634402

Jamal, I. N., Tumbol, R. A., & Mangindaan, R. E. . (2013). The use of β-glucan extracted from baker’s yeast (Saccharomyces cerevisiae) to increase non-specific immune system and resistence of tilapia (Oreochromis niloticus) to Aeromonas hydrophila. Aquatic Science & Management, 98(Mei), 92. https://doi.org/10.35800/jasm.0.0.2013.2288

Kühlwein, H., Merrifield, D. L., Rawling, M. D., Foey, A. D., & Davies, S. J. (2014). Effects of dietary β-(1,3)(1,6)-D-glucan supplementation on growth performance, intestinal morphology and haemato-immunological profile of mirror carp (Cyprinus carpio L.). Journal of Animal Physiology and Animal Nutrition, 98(2), 279–289. https://doi.org/10.1111/jpn.12078

Machuca, C., Méndez-Martínez, Y., Reyes-Becerril, M., & Angulo, C. (2022). Yeast β-Glucans as Fish Immunomodulators: A Review. Animals, 12(16), 1–24. https://doi.org/10.3390/ani12162154

Moleko, A., Sinjal, H. J., & Manoppo, H. (2014). Kelangsungan Hidup Larva Ikan Nila yang Berasal Dari Induk yang Diberi Pakan Berimunostimulan. E-Journal BUDIDAYA PERAIRAN, 2(3), 17–23. https://doi.org/10.35800/bdp.2.3.2014.5699

Muahiddah, N., & Diamahesa, W. A. (2023). The use of garlic (Allium sativum) as an immunostimulant in akuakultur. Journal of Fish Health, 3(1), 11–18. https://doi.org/10.29303/jfh.v3i1.2751

Novriadi, R., & Ibtisam. (2014). Aktivasi Sistim Imun Artemia Melalui Suplementasi β-glukan. Omni-Akuatika, 13(19), 92–102.

Palić, D., Andreasen, C. B., Herolt, D. M., Menzel, B. W., & Roth, J. A. (2006). Immunomodulatory effects of β-glucan on neutrophil function in fathead minnows (Pimephales promelas Rafinesque, 1820). Developmental and Comparative Immunology, 30(9), 817–830. https://doi.org/10.1016/j.dci.2005.11.004

Purbomartono, C., Aditya, Y., Mulia, D. S., Wuliandari, J. R., & Husin, A. (2021). Respon Imun Non-Spesifik Ikan Mas (Cyprinus carpio L.) yang Diberi β-Glukan Melalui Diet Pakan. Sainteks, 17(2), 115. https://doi.org/10.30595/sainteks.v17i2.8970

Qiao, Y., Han, F., Lu, K., Zhou, L., Rombenso, A., & Li, E. (2023). Physiological Response , and Gut Microbiota of Pacific White. Animals, 13(3778), 2–16.

Qiao, Y., Zhou, L., Qu, Y., Lu, K., Han, F., & Li, E. (2022). Effects of Different Dietary β-Glucan Levels on Antioxidant Capacity and Immunity, Gut Microbiota and Transcriptome Responses of White Shrimp (Litopenaeus vannamei) under Low Salinity. Antioxidants, 11(11), 1–16. https://doi.org/10.3390/antiox11112282

Rachmawati, D., Setyobudi, R. H., Burlakovs, J., Elfitasari, T., & Purnomo, A. H. (2021). Impacts of Immunostimulant Yeast (. 14(2), 297–302.

Rodrigues, M. V., Zanuzzo, F. S., Koch, J. F. A., de Oliveira, C. A. F., Sima, P., & Vetvicka, V. (2020). Development of Fish Immunity and the Role of β-Glucan in Immune Responses. Molecules, 25(22), 1–33. https://doi.org/10.3390/MOLECULES25225378

Sado, R. Y., Gimbo, R. Y., & Salles, F. B. (2016). Routes of β-glucan administration affect hematological and immune responses of Oreochromis niloticus. Archivos de Zootecnia, 65(252), 519–524.

Şahan, A., & Duman, S. (2010). Effect of β Glucan on Haematology of Common Carp (Cyprinus Carpio) Infected by Ectoparasites. Mediterranean Aquaculture Journal, 3(1), 1–7. https://doi.org/10.21608/maj.2010.2669

Sánchez-Martínez, J. G., Rábago-Castro, J. L., Vázquez-Sauceda, M. de la L., Pérez-Castañeda, R., Blanco-Martínez, Z., & Benavides-González, F. (2017). Effect of β-glucan dietary levels on immune response and hematology of channel catfish Ictalurus punctatus juveniles. Latin American Journal of Aquatic Research, 45(4), 690–698. https://doi.org/10.3856/vol45-issue4-fulltext-5

Vargas-Albores, F., & Yepiz-Plascencia, G. (2000). Beta glucan binding protein and its role in shrimp immune response. Aquaculture, 191(1–3), 13–21. https://doi.org/10.1016/S0044-8486(00)00416-6

Vetvicka, V., Vannucci, L., & Sima, P. (2013). The effects of β - Glucan on fish immunity. North American Journal of Medical Sciences, 5(10), 580–588. https://doi.org/10.4103/1947-2714.120792

Xiong, S., Dong, L., & Cheng, L. (2021). Neutrophils in cancer carcinogenesis and metastasis. Journal of Hematology and Oncology, 14(1), 1–17. https://doi.org/10.1186/s13045-021-01187-y

Downloads

Published

2024-10-04

How to Cite

Purbomartono, C., Prihandoko, A., Mulia, D. S., Wakhudin, W., & Widjarnako, B. (2024). Respon Imun Non-spesifik Ikan Tawes (Barbonymus gonionotus) melalui Suplementasi β-glucan dan Efektivitasnya terhadap Ikan Mas (Cyprinus carpio). JRST (Jurnal Riset Sains Dan Teknologi), 8(2), 183–194. https://doi.org/10.30595/jrst.v8i2.21941

Similar Articles

You may also start an advanced similarity search for this article.