Analisis Pengaruh Multiple Repair Welding terhadap Kekuatan dan Microstructure pada Sambungan Pengelasan Baja JIS - G3101

Authors

  • Kiryanto Kiryanto Universitas Diponegoro
  • Ahmad Firdhaus Universitas Diponegoro
  • Tri Laksana Universitas Diponegoro

DOI:

https://doi.org/10.30595/jrst.v9i1.21921

Keywords:

Gouging, JIS G3101, Struktur mikro, Uji Impak, Uji Tarik

Abstract

Dalam industri manufaktur, proses perbaikan las yang dilakukan lebih dari satu kali (multiple repair gouging) seringkali digunakan untuk memperbaiki sambungan las yang cacat, namun proses pengelasan yang berulang dapat mengubah sifat material. Penelitian ini menggunakan sampel baja JIS - G3101 yang diperbaiki dengan variasi multiple repair gouging, diikuti dengan pengujian kekuatan tarik, kekerasan, dan analisis struktur mikro menggunakan mikroskop elektron pemindai (SEM). Hasil penelitian menunjukkan bahwa multiple repair welding mempengaruhi kekuatan tarik dan kekerasan pada sambungan las, yang tergantung pada jumlah dan kondisi pengelasan ulang. Struktur mikro juga mengalami perubahan, dengan terbentuknya fasa martensite pada zona HAZ (Heat Affected Zone) pada setiap lapisan perbaikan las. Meskipun perbaikan las dapat meningkatkan ketahanan sambungan terhadap kegagalan, hasil yang optimal dicapai dengan pengaturan prosedur pengelasan yang tepat.

References

ASTM International. (2013). E8/E8M − 13a Standard Test Methods for Tension Testing of Metallic Materials. https://doi.org/10.1520/E0008_E0008M-13A

ASTM International. (2016). E23−16b:"Standard Test Methods for Notched Bar Impact Testing of Metallic Materials". https://doi.org/10.1520/E0023-16B

AWS Comittee on Arc Welding and Cutting. (1991). Recommended Practices for Air Carbon Arc Gouging and Cutting. American Welding Society.

AWS Committee on Filler Metals and Allied Materials. (2012). AWS A5. 1/A5. 1M-2012, Specification for Carbon Steel Electrodes for Shielded Metal Arc Welding. American Welding Society.

AWS D1.1/D1.1M:2004. (1980). Structural Welding Code-Steel. In American National Standards Institute, Standards.

Broido, V. L. (2015). Using welding in manufacture, repair and reconditioning of large castings of high-manganese steels. Welding International, 29(8), 650–653. https://doi.org/10.1080/09507116.2014.960701

Budiarto, Turnip, K., & Hantariksa. (2018). The effect of current gouging arc welding analysis of A283 Gr C steel to the tensile strength, hardness and microstructure. IOP Conference Series: Materials Science and Engineering, 420(1). https://doi.org/10.1088/1757-899X/420/1/012055

Gorka, J. (2002). Welding technologies for the removal of defects in welded joints and iron‐castings. Welding International, 16(5), 341–346. https://doi.org/10.1080/09507110209549543

Japanese Standards Association. (2015). JIS G 3101: Rolled steels for general structure.

Kalpakjian, S., & Schmid, S. R. (2010). Manufacturing Engineering and Technology. In Micro-Manufacturing Engineering and Technology.

Kanagawa, K., Cox, S. F., & Zhang, S. (2000). Effects of dissolution‐precipitation processes on the strength and mechanical behavior of quartz gouge at high‐temperature hydrothermal conditions. Journal of Geophysical Research: Solid Earth, 105(B5), 11115–11126. https://doi.org/10.1029/2000JB900038

Kenigsberg, A. R., Rivière, J., Marone, C., & Saffer, D. M. (2019). The Effects of Shear Strain, Fabric, and Porosity Evolution on Elastic and Mechanical Properties of Clay‐Rich Fault Gouge. Journal of Geophysical Research: Solid Earth, 124(11), 10968–10982. https://doi.org/10.1029/2019JB017944

Kromm, A., Schasse, R., Xu, P., Mente, T., & Kannengiesser, T. (2017). Influence of Weld Repair by Gouging on the Residual Stresses in High Strength Steels. Residual Stresses 2016, 2, 169–174. https://doi.org/10.21741/9781945291173-29

Liu, P., Ma, J., Fang, Y., Xu, B., & Qiu, L. (2022). Effect of Repeated Weld Repairs on Microstructure and Mechanical Properties of Heat-Affected Zone in CA6NM Stainless Steel. Advances in Materials Science and Engineering, 2022, 1–11. https://doi.org/10.1155/2022/4527917

Łomozik, M., & Turyk, E. (2018). Mechanical Properties of Welded Joints in Steel S1100QL after Multiple Repair Welding. Biuletyn Instytutu Spawalnictwa, 2018(3), 7–15. https://doi.org/10.17729/ebis.2018.3/1

Mičian, M., Winczek, J., Koňár, R., Hlavatý, I., & Gucwa, M. (2018). The Repair of Foundry Defects in Steel Castings Using Welding Technology. Archives of Foundry Engineering. https://doi.org/10.24425/122524

Moskvitin, G. V., Polyakov, A. N., & Birger, E. M. (2013). Application of laser welding methods in industrial production. Welding International, 27(7), 572–580. https://doi.org/10.1080/09507116.2012.715953

Nowotny, S., Scharek, S., Beyer, E., & Richter, K.-H. (2007). Laser Beam Build-Up Welding: Precision in Repair, Surface Cladding, and Direct 3D Metal Deposition. Journal of Thermal Spray Technology, 16(3), 344–348. https://doi.org/10.1007/s11666-007-9028-5

Wiryosumarto, H., & Okumura, T. (2000). Teknologi Pengelasan Logam. In Teknologi Pengelasan Logam (Vol. 8).

Zhao, Z. (2013). Gouge Particle Evolution in a Rock Fracture Undergoing Shear: a Microscopic DEM Study. Rock Mechanics and Rock Engineering, 46(6), 1461–1479. https://doi.org/10.1007/s00603-013-0373-z

Downloads

Published

2025-04-11

How to Cite

Kiryanto, K., Firdhaus, A., & Laksana, T. (2025). Analisis Pengaruh Multiple Repair Welding terhadap Kekuatan dan Microstructure pada Sambungan Pengelasan Baja JIS - G3101. JRST (Jurnal Riset Sains Dan Teknologi), 9(1), 27–36. https://doi.org/10.30595/jrst.v9i1.21921

Issue

Section

Articles

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.